算竞模板

本文最后更新于:2 年前

前言:
所有模板仅仅为笔者自己在算竞中用到的模板
由于笔者竞赛分都很低,高级模板还请前往查看old_yan的算竞模板

数学

最大公约数

1
2
3
4
int gcd(int a, int b) {
while (b ^= a ^= b ^= a %= b);
return a;
}

最小公倍数

1
2
3
long long lcm(long long a, long long b) {
return a * b / gcd(a, b);
}

快速幂

1
2
3
4
5
6
7
8
9
//快速幂
template<typename T>
T power(T a, ll b) {
T res = 1;
for (; b; b /= 2, a *= a)
if (b % 2)
res *= a;
return res;
}

快速判断质数

1
2
3
4
5
6
7
8
9
10
template<typename typC>
bool isPrime(typC num) {
if (num == 1 || num == 4)return 0;
if (num == 2 || num == 3)return 1;
if (num % 6 != 1 && num % 6 != 5)return 0;
typC tmp = sqrt(num);
for (int i = 5; i <= tmp; i += 6)
if (num % i == 0 || num % (i + 2) == 0)return 0;
return 1;
}

根据三点获取角度

1
2
3
4
5
6
7
8
9
10
double get_angle(double x1, double y1, double x2, double y2, double x3, double y3) {
double theta = atan2(x1 - x3, y1 - y3) - atan2(x2 - x3, y2 - y3);
if (theta > M_PI)
theta -= 2 * M_PI;
if (theta < -M_PI)
theta += 2 * M_PI;

theta = abs(theta * 180.0 / M_PI);
return theta;
}

图论

并查集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class UnionFind {
vector<int> root;
vector<int> rank;
public:
UnionFind(int size) {
root.resize(size);
rank.resize(size);
for (int i = 0; i < size; ++i) {
root[i] = rank[i] = i;
}
}

int find(int x) {
if (x == root[x]) return x;
return root[x] = find(root[x]);
}

void connect(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX != rootY) {
if (rank[rootX] > rank[rootY]) {
root[rootY] = rootX;
} else if (rank[rootX] < rank[rootY]) {
root[rootX] = rootY;
} else {
root[rootY] = rootX;
rank[rootX] += 1;
}
}
}

bool isConnected(int x, int y) {
return find(x) == find(y);
}
};

BellmanFord

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
namespace BellmanFord {
template <typename Tp>
struct BellmanFord {
struct Edge {
uint32_t from, to;
Tp distance;
};
std::vector<Edge> m_edges;
std::vector<Tp> m_distances;
std::vector<uint32_t> m_from;
uint32_t m_vertexNum;
Tp m_infiniteDistance;
BellmanFord(uint32_t _vertexNum, uint32_t _edgeNum, Tp _infiniteDistance = std::numeric_limits<Tp>::max() / 2) : m_distances(_vertexNum, _infiniteDistance), m_vertexNum(_vertexNum), m_infiniteDistance(_infiniteDistance) { m_edges.reserve(_edgeNum); }
void addEdge(uint32_t _a, uint32_t _b, Tp _distance) { m_edges.push_back({_a, _b, _distance}); }
void setDistance(uint32_t _i, Tp _distance = 0) { m_distances[_i] = _distance; }
template <bool GetPath = false>
bool calc() {
if constexpr (GetPath) m_from.resize(m_vertexNum, -1);
uint32_t lastUpdate = -1;
for (uint32_t i = 0; i < m_vertexNum && lastUpdate == i - 1; i++)
for (uint32_t index = 0; index < m_edges.size(); index++)
if (auto &[from, to, distance] = m_edges[index]; m_distances[from] != m_infiniteDistance && chmin(m_distances[to], m_distances[from] + distance)) {
lastUpdate = i;
if constexpr (GetPath) m_from[to] = index;
}
return lastUpdate != m_vertexNum - 1;
}
std::vector<uint32_t> getPath_edge(uint32_t _target) const {
std::vector<uint32_t> path;
for (uint32_t cur = _target; ~m_from[cur]; cur = m_edges[m_from[cur]].from) path.push_back(m_from[cur]);
std::reverse(path.begin(), path.end());
return path;
}
std::vector<uint32_t> getPath_vertex(uint32_t _target) const {
std::vector<uint32_t> path;
path.push_back(_target);
for (uint32_t cur = _target; ~m_from[cur];) path.push_back(cur = m_edges[m_from[cur]].from);
std::reverse(path.begin(), path.end());
return path;
}
};
}

最大流

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
namespace Dinic {
template<typename Tp>
struct Dinic {
struct RawEdge {
uint32_t from, to;
Tp cap;
};

struct Edge {
uint32_t to, rev;
Tp cap;

bool operator>(const Edge &other) const { return cap > other.cap; }
};

std::vector<RawEdge> m_rawEdges;
std::vector<Edge> m_edges;
std::vector<uint32_t> m_starts;
uint32_t m_vertexNum;

Dinic(uint32_t _vertexNum, uint32_t __edgeNum);

void addEdge(uint32_t __a, uint32_t __b, Tp __cap) { m_rawEdges.push_back({__a, __b, __cap}); }

void prepare() {
for (auto &[from, to, cap]: m_rawEdges)
if (from != to) {
m_starts[from + 1]++;
m_starts[to + 1]++;
}
std::partial_sum(m_starts.begin(), m_starts.end(), m_starts.begin());
m_edges.resize(m_starts.back());
uint32_t cursor[m_vertexNum];
std::copy(m_starts.begin(), m_starts.begin() + m_vertexNum, cursor);
for (auto &[from, to, cap]: m_rawEdges)
if (from != to) {
m_edges[cursor[from]] = Edge{to, cursor[to], cap};
m_edges[cursor[to]++] = Edge{from, cursor[from]++, 0};
}
}

template<typename _Compare = std::greater<Edge>>
void prepareSorted(_Compare __comp = _Compare()) {
prepare();
for (uint32_t i = 0; i < m_vertexNum; i++) {
uint32_t start = m_starts[i], end = m_starts[i + 1];
std::sort(m_edges.begin() + start, m_edges.begin() + end, __comp);
for (uint32_t j = start; j < end; j++) m_edges[m_edges[j].rev].rev = j;
}
}

Tp calc(uint32_t _source, uint32_t _target, Tp _infiniteCap = std::numeric_limits<Tp>::max() / 2) {
uint32_t queue[m_vertexNum], depth[m_vertexNum], it[m_vertexNum], end[m_vertexNum];
Tp res = 0;
for (uint32_t i = 0; i < m_vertexNum; i++) end[i] = m_starts[i + 1];
auto dfs = [&](auto self, uint32_t i, Tp _cap) {
if (i == _target || !_cap) return _cap;
Tp flow = 0, f;
for (uint32_t &cur = it[i]; cur != end[i]; cur++)
if (auto &[to, rev, cap] = m_edges[cur]; depth[i] + 1 == depth[to] &&
(f = self(self, to, std::min(_cap, cap))))
if (flow += f, _cap -= f, cap -= f, m_edges[rev].cap += f; !_cap) break;
return flow;
};
while (true) {
std::fill(depth, depth + m_vertexNum, -1);
uint32_t head = 0, tail = 0;
depth[_source] = 0;
queue[tail++] = _source;
while (head < tail)
for (uint32_t from = queue[head++], cur = m_starts[from], end = m_starts[from + 1];
cur < end; cur++)
if (auto &[to, rev, cap] = m_edges[cur]; cap && chmin(depth[to], depth[from] + 1))
queue[tail++] = to;
if (!~depth[_target]) break;
for (uint32_t i = 0; i < m_vertexNum; i++) it[i] = m_starts[i];
while (Tp flow = dfs(dfs, _source, _infiniteCap)) res += flow;
}
return res;
}
};

template<typename Tp>
Dinic<Tp>::Dinic(uint32_t _vertexNum, uint32_t _edgeNum) : m_starts(_vertexNum + 1, 0),
m_vertexNum(_vertexNum) {
m_rawEdges.reserve(_edgeNum);
}
}

线段树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class segmentTree {
int mod = 0x3f3f3f3f;
int a[100010];

struct Segment_Tree {
ll sum, add, mul;
int l, r;
} s[100010 * 4];

void update(int pos) {
s[pos].sum = (s[pos << 1].sum + s[pos << 1 | 1].sum) % mod;
return;
}

void pushdown(int pos) { //pushdown的维护
s[pos << 1].sum = (s[pos << 1].sum * s[pos].mul + s[pos].add * (s[pos << 1].r - s[pos << 1].l + 1)) % mod;
s[pos << 1 | 1].sum =
(s[pos << 1 | 1].sum * s[pos].mul + s[pos].add * (s[pos << 1 | 1].r - s[pos << 1 | 1].l + 1)) % mod;

s[pos << 1].mul = (s[pos << 1].mul * s[pos].mul) % mod;
s[pos << 1 | 1].mul = (s[pos << 1 | 1].mul * s[pos].mul) % mod;

s[pos << 1].add = (s[pos << 1].add * s[pos].mul + s[pos].add) % mod;
s[pos << 1 | 1].add = (s[pos << 1 | 1].add * s[pos].mul + s[pos].add) % mod;

s[pos].add = 0;
s[pos].mul = 1;
return;
}

void build_tree(int pos, int l, int r) { //建树
s[pos].l = l;
s[pos].r = r;
s[pos].mul = 1;

if (l == r) {
s[pos].sum = a[l] % mod;
return;
}

int mid = (l + r) >> 1;
build_tree(pos << 1, l, mid);
build_tree(pos << 1 | 1, mid + 1, r);
update(pos);
return;
}

void mul(int pos, int x, int y, int k) { //区间乘法
if (x <= s[pos].l && s[pos].r <= y) {
s[pos].add = (s[pos].add * k) % mod;
s[pos].mul = (s[pos].mul * k) % mod;
s[pos].sum = (s[pos].sum * k) % mod;
return;
}

pushdown(pos);
int mid = (s[pos].l + s[pos].r) >> 1;
if (x <= mid) mul(pos << 1, x, y, k);
if (y > mid) mul(pos << 1 | 1, x, y, k);
update(pos);
return;
}

void add(int pos, int x, int y, int k) { //区间加法
if (x <= s[pos].l && s[pos].r <= y) {
s[pos].add = (s[pos].add + k) % mod;
s[pos].sum = (s[pos].sum + k * (s[pos].r - s[pos].l + 1)) % mod;
return;
}

pushdown(pos);
int mid = (s[pos].l + s[pos].r) >> 1;
if (x <= mid) add(pos << 1, x, y, k);
if (y > mid) add(pos << 1 | 1, x, y, k);
update(pos);
return;
}

ll AskRange(int pos, int x, int y) { //区间询问
if (x <= s[pos].l && s[pos].r <= y) {
return s[pos].sum;
}
pushdown(pos);
ll val = 0;
int mid = (s[pos].l + s[pos].r) >> 1;
if (x <= mid) val = (val + AskRange(pos << 1, x, y)) % mod;
if (y > mid) val = (val + AskRange(pos << 1 | 1, x, y)) % mod;
return val;
}
};

字典树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Trie {
public:
int nCnt;
vector<vector<int>> ch;
vector<int> f;

int newNode() {
ch.emplace_back(26, -1);
f.push_back(0);
return nCnt++;
}

void add(string &s) {
int now = 0;
for (char i: s) {
f[now]++;
int c = i - 'a';
if (ch[now][c] == -1) ch[now][c] = newNode();
now = ch[now][c];
}
f[now]++;
}

int query(string &s) {
int now = 0, ret = 0;
for (char i: s) {
if (now > 0) ret += f[now];
int c = i - 'a';
now = ch[now][c];
}
ret += f[now];
return ret;
}
};

树状数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
template<typename T>
struct FenWick {
int N;
vector<T> arr;
FenWick(int sz): N(sz), arr(sz + 1, 0) {}
void update(int pos, T val) {
for (; pos <= N;pos |= (pos + 1)) {
arr[pos] += val;
}
}
// 获取 [1, pos] 的和
T get(int pos) {
T ret = 0;
for (; pos > 0; --pos) {
ret += arr[pos];
pos &= (pos + 1);
}
return ret;
}
// 获取 [l, r] 的和
T query(int l, int r) {
return get(r) - get(l - 1);
}
};

珂朵莉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
namespace Chtholly {
struct Node {
int l, r;
mutable int v;

Node(int il, int ir, int iv) : l(il), r(ir), v(iv) {}

bool operator<(const Node &arg) const {
return l < arg.l;
}
};

class Tree {
protected:
auto split(int pos) {
if (pos > _sz) return odt.end();
auto it = --odt.upper_bound(Node{pos, 0, 0});
if (it->l == pos) return it;
auto tmp = *it;
odt.erase(it);
odt.insert({tmp.l, pos - 1, tmp.v});
return odt.insert({pos, tmp.r, tmp.v}).first;
}

public:
Tree(int sz, int ini = 1) : _sz(sz), odt({Node{1, sz, ini}}) {}

virtual void assign(int l, int r, int v) {
auto itr = split(r + 1), itl = split(l);
// operations here
odt.erase(itl, itr);
odt.insert({l, r, v});
}

protected:
int _sz;
set<Node> odt;
};
}

ST表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
template<typename iter, typename BinOp>
class SparseTable {
using T = typename remove_reference<decltype(*declval<iter>())>::type;
vector<vector<T>> arr;
BinOp binOp;
public:
SparseTable(iter begin, iter end, BinOp binOp) : arr(1), binOp(binOp) {
int n = distance(begin, end);
arr.assign(32 - __builtin_clz(n), vector<T>(n));
arr[0].assign(begin, end);
for (int i = 1; i < arr.size(); ++i) {
for (int j = 0; j < n - (1 << i) + 1; ++j) {
arr[i][j] = binOp(arr[i - 1][j], arr[i - 1][j + (1 << (i - 1))]);
}
}
}

T query(int lPos, int rPos) {
int h = floor(log2(rPos - lPos + 1));
return binOp(arr[h][lPos], arr[h][rPos - (1 << h) + 1]);
}
};

后缀数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class SuffixArray {
private:
void radixSort(int n, int m, int w, vector<int> &sa, vector<int> &rk, vector<int> &bucket, vector<int> &idx) {
fill(all(bucket), 0);
for (int i = 0; i < n; ++i) idx[i] = sa[i];
for (int i = 0; i < n; ++i) ++bucket[rk[idx[i] + w]];
for (int i = 1; i < m; ++i) bucket[i] += bucket[i - 1];

for (int i = n - 1; i >= 0; --i) sa[--bucket[rk[idx[i] + w]]] = idx[i];
fill(all(bucket), 0);
for (int i = 0; i < n; ++i) idx[i] = sa[i];
for (int i = 0; i < n; ++i) ++bucket[rk[idx[i]]];
for (int i = 1; i < m; ++i) bucket[i] += bucket[i - 1];
for (int i = n - 1; i >= 0; --i) sa[--bucket[rk[idx[i]]]] = idx[i];
}

public:
SuffixArray(const string &s) :
n(s.length() + 1),
m(max((int) s.length() + 1, 300)),
rk(2, vector<int>((s.length() + 1) << 1)),
bucket(max((int) s.length() + 1, 300)),
idx(s.length() + 1),
sa(s.length() + 1),
ht(s.length()) {

for (int i = 0; i < n; ++i) ++bucket[rk[0][i] = s[i]];
for (int i = 1; i < m; ++i) bucket[i] += bucket[i - 1];
for (int i = n - 1; i >= 0; --i) sa[--bucket[rk[0][i]]] = i;
int pre = 1;
int cur = 0;
for (int w = 1; w < n; w <<= 1) {
swap(cur, pre);
radixSort(n, m, w, sa, rk[pre], bucket, idx);
for (int i = 1; i < n; ++i) {
if (rk[pre][sa[i]] == rk[pre][sa[i - 1]] and rk[pre][sa[i] + w] == rk[pre][sa[i - 1] + w]) {
rk[cur][sa[i]] = rk[cur][sa[i - 1]];
} else {
rk[cur][sa[i]] = rk[cur][sa[i - 1]] + 1;
}
}
}
for (int i = 0, k = 0; i < n - 1; ++i) {
if (k) --k;
while (s[i + k] == s[sa[rk[cur][i] - 1] + k]) ++k;
ht[rk[cur][i] - 1] = k;
}
}

vector<int> sa;
vector<int> ht;
private:
int n, m;
vector<vector<int>> rk;
vector<int> bucket, idx;
};

字符串

KMP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class KMP {
public:
/**
* @brief 统计目标串中有多少个模式串
* @param target 目标字符串
* @param pattern 模式字符串
* */
static int solve(string &target, string &pattern) {
int ans = 0;
int idxTarget = 0, idxPattern = 0;
vector<int> next(std::move(_prefix(pattern)));
while (idxTarget < target.length()) {
while (idxPattern != -1 and pattern[idxPattern] != target[idxTarget]) {
idxPattern = next[idxPattern];
}
++idxTarget;
++idxPattern;
if (idxPattern >= pattern.length()) {
++ans;
idxPattern = next[idxPattern];
}
}
return ans;
}

private:
static vector<int> _prefix(const string &pattern) {
int i = 0, j = -1;
vector<int> ret(pattern.length() + 1, -1);
while (i < pattern.length()) {
while (j != -1 and pattern[i] != pattern[j]) j = ret[j];
if (pattern[++i] == pattern[++j]) {
ret[i] = ret[j];
} else {
ret[i] = j;
}
}
return ret;
}
};

字符串哈希

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class StringHash {
public:
static unsigned BKDR(const std::string &str) {
unsigned seed = 131; // 31 131 1313 13131 131313 etc..
unsigned hash = 0;
for (auto c: str) {
hash = hash * seed + c;
}
return (hash & 0x7FFFFFFF);
}

static unsigned AP(const std::string &str) {
unsigned hash = 0;
for (int i = 0; i < str.length(); ++i) {
if (i & 1) {
hash ^= (~((hash << 11) ^ str[i] ^ (hash >> 5)));
} else {
hash ^= ((hash << 7) ^ str[i] ^ (hash >> 3));
}
}
return (hash & 0x7FFFFFFF);
}

static unsigned DJB(const std::string &str) {
unsigned hash = 5381;
for (auto c: str) {
hash += (hash << 5) + c;
}
return (hash & 0x7FFFFFFF);
}

static unsigned JS(const std::string &str) {
unsigned hash = 1315423911;
for (auto c: str) hash ^= ((hash << 5) + c + (hash >> 2));
return (hash & 0x7FFFFFFF);
}

static unsigned SDBM(const std::string &str) {
unsigned hash = 0;
for (auto c: str) hash = c + (hash << 6) + (hash << 16) - hash;
return (hash & 0x7FFFFFFF);
}

static unsigned PJW(const std::string &str) {
auto bits_in_unsigned_int = (unsigned) (sizeof(unsigned) * 8);
auto three_quarters = (unsigned) (bits_in_unsigned_int * 3 / 4);
auto one_eighth = (unsigned) (bits_in_unsigned_int / 8);
unsigned high_bits = (unsigned) (0xFFFFFFFF) << (bits_in_unsigned_int - one_eighth);
unsigned hash = 0;
unsigned test = 0;
for (auto c: str) {
hash = (hash << one_eighth) + c;
if ((test = hash & high_bits) != 0) {
hash = (hash ^ (test >> three_quarters)) & (~high_bits);
}
}
return (hash & 0x7FFFFFFF);
}

static unsigned ELF(const std::string &str) {
unsigned hash = 0, x = 0;
for (auto c: str) {
hash = (hash << 4) + c;
if ((x = hash & 0xF0000000ll) != 0) {
hash ^= (x >> 24);
hash &= (~x);
}
}
return (hash & 0x7FFFFFFF);
}
};

AC自动机

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
namespace Automaton {
struct ACNode {
vector<int> nex;
int fail;
int cnt;

ACNode() : nex(26, 0), cnt(0), fail(0) {}
};

class AC {
public:
AC() : nodes(1) {}

void insert(const string &arg) {
int cur = 0;
for (auto &c: arg) {
int to = c - 'a';
if (!nodes[cur].nex[to]) {
nodes[cur].nex[to] = (int) nodes.size();
nodes.emplace_back();
}
cur = nodes[cur].nex[to];
}
nodes[cur].cnt++;
}

void build() {
queue<int> Q;
for (int i = 0; i < 26; ++i) {
if (nodes[0].nex[i]) {
Q.push(nodes[0].nex[i]);
}
}
while (!Q.empty()) {
int cur = Q.front();
Q.pop();
for (int i = 0; i < 26; ++i) {
if (nodes[cur].nex[i]) {
nodes[nodes[cur].nex[i]].fail = nodes[nodes[cur].fail].nex[i];
Q.push(nodes[cur].nex[i]);
} else {
nodes[cur].nex[i] = nodes[nodes[cur].fail].nex[i];
}
}
}
}

int query(const string &arg) {
int cur = 0, ans = 0;
for (auto &c: arg) {
cur = nodes[cur].nex[c - 'a'];
for (int j = cur; j and nodes[j].cnt != -1; j = nodes[j].fail) {
ans += nodes[j].cnt;
nodes[j].cnt = -1;
}
}
return ans;
}

private:
vector<ACNode> nodes;
};
}

Tricks

fastIO

1
#define fastIO() ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)

least power of 2 and greater power of 2

1
2
3
4
5
6
7
//摘自dianhsu大佬
int leastPowerOfTwo(int val){
return 32 - __builtin_clz(val - 1);
}
int greaterPowerOfTwo(int val){
return 32 - __builtin_clz(val);
}

一些方便IO的重构

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
template<typename typC, typename typD>
istream &operator>>(istream &cin, pair<typC, typD> &a) { return cin >> a.first >> a.second; }

template<typename typC>
istream &operator>>(istream &cin, vector<typC> &a) {
for (auto &x: a) cin >> x;
return cin;
}

template<typename typC, typename typD>
ostream &operator<<(ostream &cout, const pair<typC, typD> &a) { return cout << a.first << ' ' << a.second; }

template<typename typC, typename typD>
ostream &operator<<(ostream &cout, const vector<pair<typC, typD>> &a) {
for (auto &x: a) cout << x << '\n';
return cout;
}

template<typename typC>
ostream &operator<<(ostream &cout, const vector<typC> &a) {
int n = a.size();
if (!n) return cout;
cout << a[0];
for (int i = 1; i < n; i++) cout << ' ' << a[i];
return cout;
}

算竞模板
http://example.com/2022/10/26/Moudle/
作者
Haruko
发布于
2022年10月26日
更新于
2022年11月18日
许可协议